Einstein Manifolds and Conformal Field Theories
نویسندگان
چکیده
In light of the AdS/CFT correspondence, it is natural to try to define a conformal field theory in a large N , strong coupling limit via a supergravity compactification on the product of an Einstein manifold and anti-de Sitter space. We consider the fivedimensional manifolds T pq which are coset spaces (SU(2)×SU(2))/U(1). The central charge and a part of the chiral spectrum are calculated, respectively, from the volume of T pq and the spectrum of the scalar laplacian. Of the manifolds considered, only T 11 admits any supersymmetry: it is this manifold which characterizes the supergravity solution corresponding to a large number of D3-branes at a conifold singularity, discussed recently in [1]. Through a field theory analysis of anomalous three point functions we are able to reproduce the central charge predicted for the T 11 theory by supergravity: it is 27/32 of the central charge of the N = 2 Z2 orbifold theory from which it descends via an RG flow.
منابع مشابه
Conformal mappings preserving the Einstein tensor of Weyl manifolds
In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...
متن کاملScattering Matrix in Conformal Geometry C. Robin Graham and Maciej Zworski
This paper describes the connection between scattering matrices on conformally compact asymptotically Einstein manifolds and conformally invariant objects on their boundaries at infinity. This connection is a manifestation of the general principle that the far field phenomena on a conformally compact Einstein manifold are related to conformal theories on its boundary at infinity. This relations...
متن کاملScattering matrix in conformal geometry
1. Statement of the results This paper describes the connection between scattering matrices on conformally compact asymptotically Einstein manifolds and conformally invariant objects on their boundaries at infinity. This connection is a manifestation of the general principle that the far field phenomena on a conformally compact Einstein manifold are related to conformal theories on its boundary...
متن کاملGeneralized Theories of Gravity and Conformal Continuations
Many theories of gravity admit formulations in different, conformally related manifolds, known as the Jordan and Einstein conformal frames. Among them are various scalar-tensor theories of gravity and high-order theories with the Lagrangian f (R) where R is the scalar curvature and f is an arbitrary function. It may happen that a singularity in the Einstein frame corresponds to a regular surfac...
متن کاملOn three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons
The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...
متن کامل